

Fermilab Site Filler **Collider Options**

Pushpa Bhat

Snowmass Energy Frontier Workshop Aug. 30 - Sep. 3, 2021

Special thanks to Tanaji Sen, David Neuffer, Sasha Zlobin, George Veley, Giorgio Apollinari, Vladimir Shiltsey, Sergey Belomestnykh, Anadi Canepa, Sergo Jindariani, Sam Posen

Global HEP Considerations

- There is broad consensus in the global HEP community that an e+e- Higgs Factory should be the next collider
 - Prime candidates: ILC, FCC-ee, CLIC, CEPC
 - Great physics potential, technology understood/feasible
 - Challenges: Funding, political and sociological, timescale
 - US to continue to strongly collaborate with international community on the ILC and FCC to help realize those machines.
- Snowmass is an opportunity for novel academic exercises and to focus international efforts
 - Alternate options for a Higgs Factory? Other Colliders?
 - Compact, modest cost, shorter timescale, physics potential
 - Part of global planning to advance Energy Frontier physics, technology
- Beyond the PIP-II/LBNF/DUNE project horizon
- Fermilab Future Colliders Group beginning to consider compact collider (Site Filler) options while also developing plans for engagement in ILC, and FCC efforts at CERN.
 - International partnerships are critical for the health of our field.

Compact (Site Filler) Collider Options

- Circular e+e- Higgs Factory (240 GeV)
 - Z, W, H
- Linear e+e- Higgs Factory (250 GeV)
 - Upgradeable to 360, 500 GeV ?
- Muon Collider Higgs Factory to multi-TeV
 - 0.126 to 3,6,8,10 TeV
- pp Collider (24 28 TeV)
- (Other options: γγ collider, CLIC-K, ALC,..) ← won't cover

This talk is just a preliminary survey

Lot more work needed for definitive answers!

Basic Assumptions/Specs

- Site, power constraints
- e+e- circular Higgs Factory
 - Peak lumi >1e34 cm⁻² s⁻¹ (similar to LEP3, ILC)
 - $\sigma(ZH) \sim 200 \text{ fb } @240 \text{ GeV}$
 - → 20,000 Higgs events/10⁷ s, with 1e34 cm⁻² s⁻¹
 - → 0.1 ab⁻¹ /10⁷ s. → 0.2 ab⁻¹ per year
- μ+μ- Higgs Factory (to multi-TeV)
 - Peak lumi ~ 1e32 cm⁻² s⁻¹ @126 GeV (MAP projection ~0.8e32)
 - 5x higher Lumi possible
 - \rightarrow ~14,000 70,000 Higgs/10⁷ s
 - Higher luminosity at higher energies
- pp Collider
 - Energy 24-28 TeV (a proxy for HE-LHC)
 - Lumi well in excess of 1e34 cm⁻² s⁻¹
- With any new machine, we need to consider sustainability, clean energy and environment!

(ICFA has a Panel on Sustainable Accelerators and Colliders!)

Circular e+e- Higgs Factory

Luminosity similar to LEP3 and slightly below ILC250

- Can increase by allowing higher SR power => shorter beam lifetime
- Novel ideas can help

Beam Polarization?

Polarize beams before acceleration?

Challenges:

- IR optics with small $\beta_{\underline{v}}^*$, control nonlinear chromaticity, sufficient dynamic aperture, energy acceptance
- Top-up injection needed due to low beam lifetime (successful at PEP and KEKB)
- Synchrotron radiation effects
- Vacuum system to deal with SR
- RF systems: high efficiency, frequency choices, positioning along the ring
- Vert. emittance: minimize growth

Tanaji Sen

Circumference [km]	16.0
SR power, both beams [MW]	100
Energy [GeV]	120
Hourglass factor	0.81
β_x^* , β_y^* [cm]	20, 0.1
Particles/bunch	8. x 10 ¹¹
Number of bunches	2
Beam-beam parameters ξ_x , ξ_y	0.075, 0.11
Beam current [mA]	5.0
Emittances [nm]	21, 0.05
Energy lost/turn [GeV]	10.0
Rf voltage [GV]	12.1
Damping time (τ_s) [turns]	12
Bremsstrahlung lifetime [mins]	8
Luminosity [cm ⁻² sec ⁻¹]	1.12 x 10 ³⁴

Linear Collider Higgs Factory

SLAC proposal for a normal conducting linear accelerator/collider at 77K. (C3)

- Could reach gradient ~120 MV/m
- 1-2e34 @250 GeV; using 70 -85 MV/m
- Scalable to 500 GeV at FNAL ← more RF and higher gradient; to Multi-TeV if built off-site
- Benefits from R&D in other LC technologies
 - Beam Delivery system & IP (~ILC), Damping rings (CLIC)
- Single cavity tests yield excellent results
- C3 collaboration proposing a demonstrator facility
- Other LC options? Suggested:
 - CLIC-K (70 115 MV/m?)
 - SRF-TW (~70 MV/m, proposed for ILC upgrade)
- Advancing design studies and R&D necessary

Cool Cooper Cavity (C3) LC E. Nanni

References for C3 option:

Snowmass Lol,

Seminar at UW-Madison

Bane et al., arXiv 1807.10195 (2018)

Talks at this Workshop

Muon Collider

- An explosion of interest recently in the collider community!
- A Compact collider for multi-TeV scale
- A precision and discovery machine
 - Excellent precision for Higgs coupling measurements
 - Great direct reach for new physics
 - 10 TeV $\mu^+\mu^- \cong 70$ TeV pp
 - 10 TeV $\mu^+\mu^- \cong$ 150 TeV pp for EW
- Technologically challenging, exciting, with unique opportunities for innovation
- Can be staged with physics at each stage:
 - Demonstrator facility, Higgs Factory, (nuSTORM), Multi-TeV Collider
- Intense ongoing work in the new
 International Muon Collider Collaboration
 and Snowmass Muon Collider Forum

125 GeV to 8 TeV (10 TeV?)
Muon collider can fit on site.
(14 TeV machine in the LHC tunnel)

Machine scenarios, beaminduced background, neutrino radiation, detector/physics simulations

Muon Collider (contd.)

RAST, Vol 10, No. 01, pp. 189-214 (2019)

			• .	~	
	NI			-+/	2 K
-	IV	_	ш	1 I E	er
		_	<u> </u>		

		 1110	unei		
Muon Collider Parameters. √s = 0.126 - 6 TeV					
Parameter	Units	Higgs 0.126 TeV	Top 0.35 TeV	3 TeV Collider	6 TeV Collider
Circumference	km	0.3	0.7	4.5	6
Ring Depth	m	135	135	135	540
Avg. Luminosity	10 ³⁴ cm ⁻² s ⁻¹	0.008	0.6	4.4	12
# of IPs		1	1	2	2
b* _{x,y}	cm	1.7	0.5	0.3 - 3	0.25
# of Muons/bunch	10 ^{12.}	4	3	2	2
Trans. Emittance, e _T	p-mm-rad	0.2	0.05	0.025	0.025
Long emittance, e _L	p-mm-rad	1.5	10	70	70
Bunch Length	cm	6.3	0.5	0.5	0.2
Proton driver power	MW	4	4	4	1.6
Wall Plug Power	MW	200	203	230	270
# of Higgs/10 ⁷ s		13,500	60,000	200,000	820,000
Max Mag. Field	Т	8	8	10	16
RF	MV	6000	10000	15000	30000

Planned development of Fermilab accelerator complex for LBNF/DUNE will provide a robust infrastructure for a future muon collider

Multi-MW proton beam with PIP-II linac and Booster replacement

Synergy with neutrino program via nuSTORM in the initial phase, and with precision physics program

A Compact Hadron Collider

A Compact Hadron Collider at Fermilab

- Site Filler (16 km ring, 24-28 TeV); need > 20 T LTS/HTS magnets
- Intermediate step to FCC and test bed for high field magnet use
- Efforts underway to look at preliminary designs, and technology R&D
- Planned development of the complex provide a robust injector infrastructure.
- The new machine can be an injector to a future VLHC (233) km pp collider.)
- Cheaper, high-field magnets critical.

Site-Filler pp Collider

FNAL-SF numbers T. Sen

			TIVAL 31 Humbers 1. 3cm	
parameter	FNAL SF	HE-LHC	FC	C-hh
collision energy cms [TeV]	24	27	1	00
dipole field [T]	24.4	16		16
circumference [km]	16	26.7	9	7.8
beam current [A]	0.41	1.12	0.5	
bunch intensity [10 ¹¹]	1.05	2.2	1 (0.2)	1
bunch spacing [ns]	25	25	25 (5)	25
IP b [*] _{x,y} [m]	0.5, 0.5	0.45	1.1	0.3
luminosity/IP [10 ³⁴ cm ⁻² s ⁻¹]	5	15	5	30
peak #events/bunch crossing	135	800	170	1020
stored energy/beam [GJ]	0.26		8	3.4
synchrotron rad. [W/m/beam]	3.9	3.74		30
transv. emit. damping time [h]	1.8		1.1	
initial proton burn off time [h]	3.5	3.0	17.0	3.4

pp Collider Challenges

High field dipole magnets

Requires fields above 20 T and also high field quality

Interaction region magnets

Must withstand debris power from pp interactions

Machine protection

 Very high beam energy and magnetic energy, improved & sophisticated collimation required

High synchrotron radiation

 Impact on components, cryogenic system, radiation hard electronics

Beam dynamics issues

Electron cloud effects, beam-beam interactions (head-on and long-range)
 & compensation, instabilities, crab cavity operation,

Cost: ??

Key Challenge:

High Field Magnet Technology

- Current record for Nb3Sn Magnet:
 - 16.5 T on conductor, 14.5 T magnet w/ 60 mm aperture
 - Attempts at 17-18 T ongoing
- Hybrid w/ HTS insert R&D
 - Results in the next couple of years
 - 20-25 T demo in the next 10 years
- US Magnet Development Program
 - Advance technology, improve performance, reduce cost
- IBS magnet research promising for >20T but early days
 - Need aggressive R&D
 - Might provide cheap and robust HF magnet option

Closing Remarks

Snowmass provides the opportunity to consider and study facilities that can be hosted in the US, and to shape the US/global HEP program for the coming decades.

- The US community is already actively engaged in the efforts on the major global projects – the ILC effort in Japan and the FCC-ee/hh at CERN.
- Efforts to consider compact machines that might be realized on modest time scales and costs, could be profitable!

Compact (Site-Filler) Colliders

Circumference ≥16 km

- 1. e+e- Site Filler Higgs Factory
- 2. Muon Collider Higgs Factory
- 3. Muon Collider 3-8 TeV
- 4. pp Site Filler Collider 24-28 TeV

Linear ~ 7 km

Higgs Factories +

- 1. C3 (Cool Copper) linear collider
- 2. NC RF (CLIC-K) Collider
- 3. SRF-TW linear collider

Extra Slides

Mark Palmer

Key R&D Challenges

Issues

Status

Target

- Multi-MW Targets
- High Field, Large Bore Capture Solenoid
- Ongoing >1 MW target development
- Challenging engineering for capture solenoid

Front End

- Energy Deposition in FE Components
- RF in Magnetic Fields (see Cooling)

Current designs handle energy deposition

Cooling

- · RF in Magnetic Field
- High and Very High Field SC Magnets
- Overall Ionization Cooling Performance
- MAP designs use 20 MV/m → 50 MV/m demo
- >30 T solenoid demonstrated for Final Cooling
- Cooling design that achieves most goals

Acceleration

- Acceptance
- Ramping System
- Self-Consistent Design

- Designs in place for accel to 125 GeV CoM
- Magnet system development needed for <u>TeV</u>-scale
- Self-consistent design needed for TeV-scale

Collider Ring

- Magnet Strengths, Apertures, and Shielding
- High Energy Neutrino Radiation

- Self-consistent lattices with magnet conceptual design up to 3 TeV
- > ~5 <u>TeV</u> v radiation solution required

MDI/Detector

- Backgrounds from μ Decays
- IR Shielding

- Further design work required for multi-<u>TeV</u>
- Initial multi-TeV promising

19

Muon Collider Forum

August 24, 2021

High Field Magnet R&D for pp Collider

CERN plan:

Gate: Assess suitability of HTS for accelerator magnets applications

C³ timeline, parameters

C³ evolution: best timeline for the physics

	2019-2025	2025-2035	2035-2045	2045-2055	2055-2065
Accelerator					
Demo proposal					
Demo test					
Construction					
Commissioning			~2 ak)-1	
Physics @ $250~{\rm GeV}$					
RF Upgrade				~4	4 ab-1
Physics @ 550 GeV					
$\label{eq:Multi-TeV} \text{Upg.}$					
Detector					
LOIs					
TDR					
Construction					
Commissioning					

HL-LHC

Collider	ILC	CCC
σ_z	$300~\mu\mathrm{m}$	$100~\mu\mathrm{m}$
β_x	8.0 mm	13 mm
β_y	$0.41~\mathrm{mm}$	0.1 mm
ϵ_x	500 nm/rad	900 nm/rad
ϵ_y	35 nm/rad	20 nm/rad
N bunches	1312	133
Repetition rate	$5~\mathrm{Hz}$	$120~\mathrm{Hz}$
Crossing angle	0.014	0.020
Crab angle	0.014/2	0.020/2

Summary of Parameters for 250 GeV Conceptual Design

Luminosity - 1x10³⁴ Temperature (K) 77 Beam Loading (%) 45 Gradient (MeV/m) 70 Flat Top Pulse Length (µs) 0.7 Cryogenic Load @ 77K (MW) **Electrical Load (MW)** 100 Trains repeat at 120 Hz **Pulse Format** RF envelope 133 1 nC bunches spaced by 30 RF periods (5.25 ns)

Parameter (250 GeV CoM) Reliquification Plant Cost Single Beam Power (125 GeV linac) Total Beam Power MW 4 Total RF Power MW 18 Heat Load at Cryogenic Temperature Electrical Power for RF Electrical Power for Cryo-Cooler Washington Units Value W\$ /	<u> </u>	Conceptual	<i>-</i>	<u> </u>
Plant Cost Single Beam Power (125 GeV linac) Total Beam Power MW 4 Total RF Power MW 18 Heat Load at Cryogenic Temperature Electrical Power for RF Electrical Power MW 60			Units	Value
Power (125 GeV linac) Total Beam Power MW 4 Total RF Power MW 18 Heat Load at MW 9 Cryogenic Temperature Electrical Power MW 40 for RF Electrical Power MW 60		•	M\$/MW	18
Total RF Power MW 18 Heat Load at MW 9 Cryogenic Temperature Electrical Power for RF Electrical Power MW 60		Power (125 GeV	MW	2
Heat Load at MW 9 Cryogenic Temperature Electrical Power MW 40 for RF Electrical Power MW 60		Total Beam Power	MW	4
Cryogenic Temperature Electrical Power MW 40 for RF Electrical Power MW 60		Total RF Power	MW	18
for RF Electrical Power MW 60		Cryogenic	MW	9
	_		MW	40
			MW	60